fact sheet

A Beyond Zero Future for South East NSW

Livestock Emissions

Why cows should eat seaweed

Why is methane important?

- Methane (CH₄) from burping livestock is a major contributor to world greenhouse gas emissions.
- In South East Region NSW 75% of all agricultural emissions are from livestock.
- Methane is 28 times more potent as a climate warming agent than carbon dioxide (CO₂) over 100 years and 80 times more potent over the critical next 20 years.
- So, while 20% of livestock burp is CO₂, it is methane that is doing most damage to the climate.
- Since 1950, atmospheric methane has increased 70% while carbon dioxide has increased 28%.¹

Which animals produce the most methane?

Every year, each animal generates methane 2,3 equivalent to tonnes of CO₂:

Dairy cow	146	kg CH_4	4.1	tCO ₂ -e
Beef cow	55	kg CH_4	1.5	tCO ₂ -e
Dry sheep	8	kg CH_4	0.22	tCO ₂ -e
Human	0.05	kg CH_4	0.0014	tCO ₂ -e

SOURCE: Nasa's Goddard Institute for Space Science

The annual 4.1 tCO_2 from a dairy cow is about the same as the 3.8 tCO_2 emitted by an average petrol car driving 15,000km in a year.

How much methane is burped locally?

In South East Region NSW shires with large grazing areas, **methane from livestock** contributed the following to total shire emissions in 2019:

- Yass Valley 21% of 418,000 tCO₂-e
- Snowy Valleys 16% of 611,000 tCO₂-e
- Snowy Monaro 36% of 735,000 tCO₂-e
- Bega Valley 18% of 494,000 tCO₂-e

Reducing livestock emissions

- There are a number of methods for reducing methane emissions from ruminant digestive processes, including dietary supplements, selective breeding and optimising reproductive cycles.
- The most promising method is the regular addition of small amounts of processed Asparagopsis seaweed to ruminant diets.⁴

So, why should farm animals be eating seaweed?

CSIRO research indicates that *Asparagopsis* supplements can cut ruminant methane emissions by 80%-90%.

- Half (51%) of all agricultural emissions (which represent 22% of total emissions) would be avoided if all ruminant diets were supplemented with *Asparagopsis*.
- Asparagopsis can be grown commercially and locally along the south east NSW coast, offering economic and environmental benefits from the development of a new industry.^{5,6}

www.zerose.space

Livestock Emissions—2

A Beyond Zero Future for South East NSW

What will it cost?

- It is too early to say what the cost to farmers of *Asparagopsis* supplements will be.
- While the current federal Carbon Solutions Fund (CSF) price of \$16/tCO₂-e would be too low to cover it, at the international carbon price of \$80/tCO₂-e, farmers could potentially cover the cost with payments received from carbon markets. These would amount to \$278 per dairy cow, \$105 per beef cow and \$10 per sheep per year.
- Food and fibre consumers may also pay a price premium for certified low-methane products which would benefit the producer.

Would you like to do more?

- Climate change has cut Australian farm profits by 22% over the last 20 years.⁷
- Through avoiding methane emissions from livestock, farmers can make a major contribution to climate solutions.
- Farmers for Climate Action are working to⁸:
 - establish a Land and Environment Investment Fund
 - support innovation and attract large-scale investment in carbon farming.
- Government has a key role to play in generating an easyto-access agri-carbon market.

Footnotes

¹ <u>United States Environmental Protection Agency. Climate Change</u> Indicators: Atmospheric Concentrations of Greenhouse Gases.

² Moate, P. *et al.* 'Reducing the carbon footprint of Australian production by mitigation of enteric methane emissions'. *Animal Prod Sci.* 2016;56:1017-1034

³Crutzen, P. *et al.* rt. 'Methane production by domestic animals, wild ruminants, other herbivorous fauna, and humans'. Tellus Seriew B, *Chemical and physical meteorology*. 1986,38: 271-284. doi:10.3402/tellusb.v38i3-4.15135

⁴ Kinley, R. (2020). 'Mitigating the carbon footprint and improving

productivity of ruminant livestock agriculture using a red seaweed'. *Journal of Cleaner Production* 2020;259:120836. doi:10.1016/j.jclepro.2020.120836

⁵ <u>Kelly, J. (2020). *Australian Seaweed Industry Blueprint*. Australian <u>Seaweed Institute. (Available)</u></u>

⁶<u>https://www.seaforest.com.au/</u>

⁷ <u>Australian Bureau of Agricultural and Resource Economics and Sciences</u>

⁸ Farmers for Climate Action Regional Horizons Plan

Cover image from Shutterstock.com, Methane per species diagram from NASA, Ruminant Methane diagram from Let's Talk Science, copyright 2019

This is an introductory summary. Technical Report here.

www.zerose.space